4.7 Article

Adaptation delay causes a burst of mutations in bacteria responding to oxidative stress

期刊

EMBO REPORTS
卷 24, 期 1, 页码 -

出版社

WILEY
DOI: 10.15252/embr.202255640

关键词

DNA damage; mutation; oxidative stress; single-molecule imaging; stress response

向作者/读者索取更多资源

Understanding the interplay between phenotypic and genetic adaptation is a focus of evolutionary biology. In this study, we found that the dynamics of stress response can affect the timing of genetic adaptation to oxidative stress in bacteria. By developing new microscopy methods, we revealed how these mutation dynamics arise from phenotypic adaptation mechanisms. Additionally, we discovered that mutation bursts are a general phenomenon associated with adaptation delays.
Understanding the interplay between phenotypic and genetic adaptation is a focus of evolutionary biology. In bacteria, the oxidative stress response prevents mutagenesis by reactive oxygen species (ROS). We hypothesise that the stress response dynamics can therefore affect the timing of the mutation supply that fuels genetic adaptation to oxidative stress. We uncover that sudden hydrogen peroxide stress causes a burst of mutations. By developing single-molecule and single-cell microscopy methods, we determine how these mutation dynamics arise from phenotypic adaptation mechanisms. H2O2 signalling by the transcription factor OxyR rapidly induces ROS-scavenging enzymes. However, an adaptation delay leaves cells vulnerable to the mutagenic and toxic effects of hydroxyl radicals generated by the Fenton reaction. Resulting DNA damage is counteracted by a spike in DNA repair activities during the adaptation delay. Absence of a mutation burst in cells with prior stress exposure or constitutive OxyR activation shows that the timing of phenotypic adaptation directly controls stress-induced mutagenesis. Similar observations for alkylation stress show that mutation bursts are a general phenomenon associated with adaptation delays.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据