4.6 Article

Wafer-biscuits-like few-graphene-layers carbon with N, P, S triple-doping for efficient and stable sodium-ion storage

期刊

ELECTROCHIMICA ACTA
卷 441, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2022.141813

关键词

Sodium-ion batteries; Triple-heteroatom doping; Few-graphene-layers carbon; Expanded interlayer spacing; Anti-agglomeration

向作者/读者索取更多资源

This study presents a scalable template approach to prepare N, P, S triple-doped few-graphene-layers carbon with expanded interlayer spacing. The carbon anode with wafer-biscuit-like architecture exhibits high reversible capacity, good rate capability, and long-term stability for sodium-ion batteries. The sodium storage mechanism of this carbon anode is systematically explored.
Carbon-based materials are one of the most attractive anodes for sodium-ion batteries because of their wide availability, facile synthesis, and low cost. However, rational designing carbon-based architecture towards upgrading the electrochemical performance of anodes for sodium storage has been a great challenge. Herein, we prepared N, P, S triple-doped few-graphene-layers carbon with expanded interlayer spacing via a scalable template approach. The few-graphene-layers carbon negatively replicates the structure of the layered template to generate a wafer-biscuit-like architecture, which prevents the restack of carbon nanosheets. The interlayer spacing and heteroatom contents of wafer-biscuit-like carbon architecture can be modulated by varying carbonization temperatures. Consequently, the optimum carbon anode delivers a high reversible capacity of 329 mAh g- 1, good rate capability, and long-term stability of 300 cycles at 1 A g- 1. Furthermore, the sodium storage mechanism of wafer-biscuit-like carbon anodes has been systematically explored.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据