4.6 Article

Evaluating the stability of Ir single atom and Ru atomic cluster oxygen evolution reaction electrocatalysts

期刊

ELECTROCHIMICA ACTA
卷 444, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2023.141982

关键词

Single-atom catalysts; Oxygen evolution reaction; Stability; ICP-MS; Lattice oxygen mechanism; Backing electrode

向作者/读者索取更多资源

Single-atom catalysts (SACs) have shown improved electrocatalytic performance in various industrially relevant reactions, including oxygen evolution reaction (OER). However, the stability of SACs has received little attention in the literature. In this study, we evaluate the stability of Ir SAC and highly dispersed Ru catalysts supported by indium doped tin oxide (ITO) using online inductively coupled plasma mass spectrometry setup (online ICP-MS). We find that these catalysts exhibit high activity but lower stability, and propose that the change in OER mechanism from adsorbate evolution mechanism (AEM) to lattice oxygen mechanism (LOM) with participation of the support contributes to their lower stability.
Single-atom catalysts (SACs) have recently emerged in electrocatalysis due to their improved electrocatalytic performance in many industrially relevant reactions. The potential application of SACs also includes oxygen evolution reaction (OER), where high anodic potentials and corrosive acidic environments narrow the choice of classical nanoparticulated electrocatalysts to scarce iridium (Ir) and ruthenium (Ru) noble metals. To date, published literature mainly focused on improving SACs activity or selectivity, while stability was rarely assessed using electrochemical methods and post-mortem characterizations. To fill this knowledge gap, we utilize an online inductively coupled plasma mass spectrometry setup (online ICP-MS) to evaluate the stability of Ir SAC and highly dispersed Ru catalysts supported by indium doped tin oxide (ITO) prepared via surface organometallic chemistry. After benchmarking with commercial IrO2 and RuO2 nanoparticulated catalysts, we validate their high activity and determine their lower stability, confirming the previously reported inverse activity-stability relationship. The observed lower stability is proposed to originate from a change in the OER mechanism from the adsorbate evolution mechanism (AEM) driven by the catalysts to the lattice oxygen mechanism (LOM) with participation of the support. This is confirmed by the increase in Tafel slope, coinciding with the dissolution onset of the ITO support. Additionally, we show that there is no effect of the commonly used backing electrodes (glassy carbon, gold foil, and boron-doped diamond) on the activity and stability. This work provides guidelines for evaluating highly dispersed atomic catalysts in future research and fundamental insights into the role of the support in their stability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据