4.6 Article

Deep learning for power quality

期刊

ELECTRIC POWER SYSTEMS RESEARCH
卷 214, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.epsr.2022.108887

关键词

Power quality; Deep learning; Data analysis; Artificial intelligence; Machine learning

向作者/读者索取更多资源

This paper introduces deep learning to the power quality community by reviewing applications and challenges. It shows that most applications are based on synthetic data and lack proper labelling. Implementing deep learning in power quality faces barriers such as lack of novelty, transparency, and benchmark databases. The paper identifies research gaps in semi-supervised learning, explainable deep learning, and hybrid approaches. Suggestions for improvement include collaboration, labelling and enlarging datasets, explaining decision making, and providing open-access databases.
This paper aims to introduce deep learning to the power quality community by reviewing the latest applications and discussing the open challenges of this technology. Publications covering deep learning to power quality are stratified in terms of application, type of data, and learning technique. This work shows that the majority of the deep learning applications to power quality are based on unrealistic synthetic data and supervised learning without proper labelling. Some applications with deep learning have already been solved by previous machine learning methods or expert systems. The main barriers to implementing deep learning to power quality are related to lack of novelty, low transparency of the deep learning methods, and lack of benchmark databases. This work also discusses that even with automatic feature extraction by deep learning methods, power quality expert knowledge is still needed to implement and analyse the results. The main research gaps identified in this work are related to the applications of semi-supervised learning, explainable deep learning and hybrid approaches combining deep learning with expert systems. Suggestions for overcoming the present limitations are: providing a stronger collaboration among the grid stakeholders and academy to keep track of power quality events; proper labelling and enlarging of datasets in deep learning methods; explaining the end-to-end decision making of deep learning methods; providing open-access databases for comparison purposes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据