4.7 Article

Physio-biochemical and transcriptomic analysis reveals that the mechanism of Bacillus cereus G2 alleviated oxidative stress of salt-stressed Glycyrrhiza uralensis Fisch. seedlings

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2022.114264

关键词

Salt stress; Glycyrrhiza uralensis Fisch; Bacillus cereus G2; Osmo-protectants; Antioxidant enzymes; AsA-GSH cycle

资金

  1. National Natural Science Foundation of China [82160724]
  2. Ningxia Science and Technology Innovation Leader Program [2020GKLRLX12]

向作者/读者索取更多资源

In this study, it was found through a pot experiment that the endophyte Bacillus cereus G2 alleviated osmotic and oxidative stress in salt-stressed Glycyrrhiza uralensis by increasing the contents of proline, soluble sugar, and glycine betaine, as well as the activities of antioxidant enzymes and the ascorbate-glutathione cycle.
Salt stress severely affects the growth and productivity of Glycyrrhiza uralensis. Our previous research found that the endophyte Bacillus cereus G2 alleviated the osmotic and oxidative stress in G. uralensis exposed to salinity. However, the mechanism is still unclear. Here, a pot experiment was conducted to analyse the change in pa-rameters related to osmotic adjustment and antioxidant metabolism by G2 in salt-stressed G. uralensis at the physio-biochemistry and transcriptome levels. The results showed that G2 significantly increased proline content by 48 %, glycine betaine content by 75 % due to activated expression of BADH1, and soluble sugar content by 77 % due to upregulated expression of alpha-glucosidase and SS, which might help to decrease the cell osmotic potential, enable the cell to absorb water, and stabilize the cell's protein and membrane structure, thereby alleviating osmotic stress. Regarding antioxidant metabolism, G2 significantly decreased malondialdehyde (MDA) content by 27 %, which might be ascribed to the increase in superoxide dismutase (SOD) activity that facilitated the decrease in the superoxide radical (O2 ascorbate peroxidase (APX) and glutathione peroxidase (GPX), which helped stabilize the normal level of hydrogen peroxide (H2O2). G2 also increased glutathione (GSH) content by 65 % due to increased glutathione reductase (GR) activity and GSH/GSSG ratio, but G2 decreased oxidized glutathione (GSSG) content by 13 % due to decreased activity of dehydroascorbate reductase (DHAR), which could provide sufficient substrates for the ascorbate-glutathione (AsA-GSH) cycle to eliminate excess H2O2 that was not cleared in a timely manner by the antioxidant enzyme system. Taken together, G2 alleviated osmotic stress by increasing proline, soluble sugar, and glycine betaine contents and alleviated oxidative stress by the synergistic effect of antioxidant enzymes and the AsA-GSH cycle. Therefore, the results may be useful for explaining the mechanism by which endophyte inoculation regulates the salt tolerance of crops. ? ) production rate; it also increased the activities of catalase (CAT),

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据