4.7 Article

Rapid assessment of feeding traces enables detection of drivers of saproxylic insects across spatial scales

期刊

ECOLOGICAL INDICATORS
卷 145, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.ecolind.2022.109742

关键词

Austria; Climate change; Coleoptera; Conditional Inference Tree; Deadwood; Logistic Regression; National Forest Inventory; Threshold

资金

  1. Rural Development Fund Project ConnectForBio
  2. [7.6.1.c-III3-58/20]

向作者/读者索取更多资源

Understanding the habitat requirements and response of saproxylic insects to habitat changes is crucial for assessing the ecological impacts of forest management. This study investigated the drivers and habitat thresholds of different saproxylic insect families at multiple spatial scales. The results revealed complex interactions among influencing factors, with individual tree characteristics being of major importance. The findings highlight the need for tree species-specific deadwood management, taking into account site-specific conditions, to maintain biological diversity in forest ecosystems in the face of climate change.
Knowledge of habitat requirements of saproxylic insects and their response to habitat changes is critical for assessing the ecological impacts of forest management. Several studies have demonstrated a positive relationship of tree-species richness, deadwood volume, or structural diversity with saproxylic species diversity, while the relationship with the abundance of potential pest species have often been negative. A better understanding of which factors drive saproxylic insects' occurrence is therefore essential for deriving urgently needed thresholds for key habitat conditions. We tested a rapid assessment method applicable at large scale based on recorded feeding galleries and boreholes assessed during the Austrian National Forest Inventory to investigate the drivers and habitat thresholds of different saproxylic insect families; i.e. Buprestidae, Cerambycidae, Curculionidae, Siricidae, at multiple spatial scales; i.e. at the object, forest stand and landscape level. We modelled the relative abundance of all insects and these families considering nineteen explanatory variables using ordinal logistic regression models. Key habitat characteristics were identified using recursive partitioning. Our results revealed complex interactions among influencing factors at different spatial scales. We showed that deadwood volume was of surprisingly little importance. Instead, individual tree characteristics were of major importance, demonstrating the value of resource quality and variability. The abundance of all saproxylic insect families increased with advancing decomposition, on trees taller than 18 m, and above a living stand volume of 41 m(3)ha(-1). Aiming to guide forest management, not only forest type-specific, but tree species-specific deadwood management is needed, taking into account site-specific conditions, including temperature and precipitation. For assessing temporal trends in insect colonization and habitat dynamics as well as the effects of forest management, we propose a continuous monitoring of insect traces, including living but weakened trees. This will allow for further thresholds that are urgently needed for maintaining biological diversity in forest ecosystems in the face of climate change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据