4.7 Article

Optimal design and operation of reverse osmosis seawater desalination system for boron removal with economic, energy, and environmental concerns

期刊

DESALINATION
卷 546, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.desal.2022.116178

关键词

Operational optimization; Exergo-environmental analysis; Eco-costs; value ratio; Exergetic cost theory; Emergy analysis

向作者/读者索取更多资源

This paper introduces a superstructure-based simultaneous optimum design and operation of seawater reverse osmosis (RO) system with boron removal under time-variant constraints. Three operational strategies are utilized to improve operability of the system under boron restrictions, including changing the activated number of pressure vessels, permeates split ratio, and pH values. Moreover, exergo-environmental and exergoeconoenvironmental analysis models are integrated, allowing for optimization of economic efficiency, energy utilization, and environmental impact in both design and operation phases.
This paper introduces a superstructure-based simultaneous optimum design and operation of seawater reverse osmosis (RO) system with boron removal under time-variant constraints. Three operational strategies are utilized to improve operability of the system under boron restrictions, including changing the activated number of pressure vessels, permeates split ratio, and pH values. Moreover, exergo-environmental and exergoeconoenvironmental analysis models are integrated. The economic efficiency, energy utilization, and environmental impact could be optimized in both design and operation phases. The effect of water tank area, membrane type, and boron concentration on water production are investigated with constant feed conditions. Choosing proper water tank volume and type of membrane could not only reduce cost but also better operation conditions, such as improving the efficiency of pumps and reducing feed pH of RO pass 2. When both the eco-costs/value ratio and emergy rate of product are added as a penalty, the annual operation cost (a reduction of 5.50 %), emergy rate (a reduction of 7.02 %) and eco-costs/value ratio (a reduction of 7.48 %) of the product could be reduced with only a small amount of water cost increment (about 2.66 %). Improving the efficiency of pumps would be an effective method to improve overall performance of the RO plant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据