4.7 Article

Multipass hollow fiber membrane modules for membrane distillation

期刊

DESALINATION
卷 548, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.desal.2022.116239

关键词

Membrane distillation; Energy efficiency; Hollow fibers; Multipass modules

向作者/读者索取更多资源

Membrane distillation is a process for desalination, but high thermal energy consumption is a major obstacle to its widespread adoption. This study proposes multipass membrane modules to improve the thermal efficiency of membrane distillation. The results show that the multipass design is more energy efficient and has higher flux, while the single shell and multiple tube pass design has the highest specific thermal energy consumption.
Membrane distillation (MD) is an interesting process for desalination; however high thermal energy consumption remains one of the main obstacles in its widespread adoption. The current study presents multipass hollow fiber membrane modules to improve thermal efficiency of MD process. Fundamentally three module designs are considered: conventional one shell and one tube (fiber) pass (A), 1 shell and multiple tube passes (B/C) and equal but multiple shell and tube passes (D). The performance of the proposed designs is analyzed as a function of length of each pass, number of passes and operating conditions by using Aspen Plus simulator. The results demonstrate that the traditional design A yields the highest flux - up to 92 % higher than the multipass design D. On the other hand, the multipass design D is the most energy efficiency and shows up to 35 % less thermal energy consumption than the conventional single pass design of the same length. Single shell and multiple tube pass designs (B/C) show higher flux than D; however, their specific thermal energy consumption remains the highest among all the designs investigated. The pressure drop in multipass modules was marginally (1.5 %) higher than the conventional single pass modules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据