4.7 Article

Ultrafast charge separation in a WC@C/CdS heterojunction enables efficient visible-light-driven hydrogen generation

期刊

DALTON TRANSACTIONS
卷 52, 期 2, 页码 290-296

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2dt03129a

关键词

-

向作者/读者索取更多资源

In this study, a WC@C cocatalyst was prepared and successfully enhanced the photocatalytic hydrogen evolution rate of CdS nanorods. The WC@C/CdS composite photocatalyst with a 7 wt% content of WC@C exhibited excellent photocatalytic performance with high hydrogen evolution rate and apparent quantum efficiency, as well as good stability in continuous cycling experiments.
The rapid recombination of photogenerated carriers and strong photocorrosion have considerably limited the practical application of CdS in the field of photocatalysis. Loading a cocatalyst has been widely utilized to largely enhance photocatalytic activity. In the present work, a WC@C cocatalyst was prepared by a novel molten salt method and explored as an efficient noble-metal-free cocatalyst to significantly enhance the photocatalytic hydrogen evolution rate of CdS nanorods. The WC@C/CdS composite photocatalyst with a 7 wt% content of WC@C showed the highest photocatalytic hydrogen evolution rate of 8.84 mmol g(-1) h(-1), which was about 21 and 31 times higher than those of CdS and 7 wt% Pt/CdS under visible light irradiation. A high apparent quantum efficiency (AQY) of 55.28% could be achieved under 420 nm monochromatic light. Furthermore, the photocatalytic activity of the 7 wt% WC@C/CdS photocatalyst exhibited good stability for 12 consecutive cycles of the photocatalytic experiment with a total reaction time of 42 h. The excellent photocatalytic performance of the photocatalyst was attributed to the formation of a Schottky junction and the loading cocatalyst, which not only accelerated the separation of the photogenerated carrier but also provided a reactive site for hydrogen evolution. This work revealed that WC@C could act as an excellent cocatalyst for enhancing the photocatalytic activity of CdS nanorods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据