4.4 Article

First-principles study of SrTe and BaTe: Promising wide-band-gap semiconductors with ambipolar doping

期刊

CURRENT APPLIED PHYSICS
卷 48, 期 -, 页码 90-96

出版社

ELSEVIER
DOI: 10.1016/j.cap.2023.02.002

关键词

Wide band gap; Semiconductors; Tellurides; Density functional theory

向作者/读者索取更多资源

Using first-principles calculations, alkaline earth tellurides MTe (M = Sr or Ba) are shown to be promising wide-band-gap semiconductors that can be ambipolarly doped and transparent to visible light. With large direct band gaps (3.74 eV for SrTe and 3.09 eV for BaTe), 100 nm thick MTe films exhibit significant transmittance (over 80%) for visible light. The effective mass of electrons and holes in MTe is predicted to be small (<1 m0), enabling high carrier mobilities.
Transparent wide-band-gap (WBG) semiconductors are crucial components in diverse (opto)electronic and energy devices. Using first-principles calculations, we demonstrate that alkaline earth tellurides MTe (M = Sr or Ba) are promising WBG semiconductors that can be ambipolarly doped and transparent to visible light. Because of their large direct band gaps (3.74 eV for SrTe and 3.09 eV for BaTe), 100 nm thick MTe films exhibit significant transmittance (over 80%) for visible light. The effective mass of electrons and holes in MTe is predicted to be small (<1 m0) enough to show high carrier mobilities. From the analysis of the defect properties, we show that the major carrier type (electrons vs. holes) and its concentration can be controlled by adjusting the synthetic conditions. We also find that the valence band maximum of MTe is relatively shallow. Thus, MTe can be utilized as an electron-blocking (hole-transport) layer in emerging perovskite solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据