4.7 Article

Quasi-static deformation simulations of molecular crystals

期刊

CRYSTENGCOMM
卷 25, 期 7, 页码 1159-1174

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2ce01426b

关键词

-

向作者/读者索取更多资源

Two computational methods were used to study the slip deformation of simple molecular crystalline materials, revealing the critical influence of internal molecular rotations on slip barriers and deformation mechanisms. The results also provide new interpretations of slip-observed morphologies.
Identification of the mechanical performance of pharmaceuticals in the drug discovery process can determine the tabletability of a target molecule. Determination of the active slip systems and their ranking in molecular crystals is challenging because molecules offer a set of configurational variables absent from metallic or simple ionic materials, such as bond rotations, molecular rotations, and the relative orientation of molecules. This paper uses two computational methods, the rigid-block and tensor-based shearing methods, to calculate the slip barriers and gain insights regarding the slip deformation of simple molecular crystalline materials, using diatomic solid oxygen and anthracene as examples. Both methods use constrained quasi-static energy minimisation to simulate the materials' displacement and homogeneous shearing. These shearing methods rank the slip systems in oxygen and anthracene in agreement with experiment, including those reported herein where two previously unknown active slip systems in the basal plane of anthracene were identified independently from the computations. Internal degrees of freedom, in the form of shear-induced molecular rotations, critically influence the slip barriers and deformation mechanism. Our results uncover rotational twinning, which is linked to crystallographic symmetry rather than partial dislocations, while homogeneous shear of anthracene leads to a series of polymorphic transitions. The results also provide alternative interpretations of slip-observed morphologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据