4.7 Article

Performance improvement of lauric acid-1-hexadecanol eutectic phase change material with bio-sourced seashell powder addition for thermal energy storage in buildings

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 366, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2022.130223

关键词

Composite phase change material; Eutectic mixture; Powdered seashell waste; High -temperature treatment; Thermal conductivity enhancement

向作者/读者索取更多资源

This study aims to improve the low thermal conductivity of organic phase change materials (PCMs) by introducing a bio-sourced additive. Composite PCMs containing powdered seashell waste as a thermal enhancer were developed, and their thermo-physical properties were characterized. Experimental results showed that seashell powder significantly enhanced the thermal conductivity of the PCM. Therefore, seashell powder has the potential to improve the performance of organic PCMs for thermal energy storage in buildings.
Organic phase change materials (PCMs) such as fatty acids and fatty alcohols are often trapped by inherent low thermal conductivity for thermal energy storage in buildings. The present study is devoted to ameliorating this problem from an innovative perspective of introducing bio-sourced additive. To promote performance of binary eutectic PCM comprising lauric acid (LA) and 1-hexadecanol (HD), the composite PCMs are developed, where the powdered seashell waste is added as thermal enhancer, and their thermo-physical properties are characterized via DSC, FT-IR, SEM, TGA, cooling curve analysis, accelerated thermal cycling test together with thermal con-ductivity measurement. Meanwhile, the impacts of two particle sizes, five mixing ratios between two different sizes and two modification approaches of seashell powder (SP) are surveyed meticulously. Experimental results turn out that 80-mesh SP and 300-mesh SP are both capable of providing greater thermal conductivity when dispersed in LA-HD eutectic PCM, and the enhancement level of thermal conduction is even higher for composite PCM containing 300-mesh SP than for composite PCM containing TiO2 powder. Besides, the thermal conduction ability is strengthened to the maximum extent when 80-mesh SP and 300-mesh SP are combined at mass ratio of 3:7, while the same situation also occurs when seashell powder is treated by high-temperature calcination. The resultant composite PCM possesses encouraging melting temperature and melting enthalpy, and its thermal stability and reliability are well approved. Therefore, we conclude that the seashell powder has the expectable competence to realize performance improvement of organic PCM for application in buildings for thermal energy storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据