4.7 Article

Double-life sustainable construction materials from alkali activation of volcanic ash/discarded glass mixture

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 359, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2022.129540

关键词

Waste valorization; Alkali activation; Glass-ceramics; Cellular materials

资金

  1. University of Padova (Dept. of Industrial Engineering)
  2. [BIRD202134]

向作者/读者索取更多资源

This study aimed to improve the sustainability of volcanic ash conversion into inorganic polymers by activating fine powders of volcanic ash with low molarity NaOH solutions and waste glass powders. The resulting porous glass-ceramics exhibited remarkable strength-to-density ratio. Foams with excellent strength-to-density ratio were also obtained through thermal transformation of highly porous cold consolidated materials.
Volcanic ash, according to the large amount of silica and alumina, may be considered as feedstock for geopolymers. However, the relatively low reactivity, mostly due to the relatively low amount of amorphous phase, implies the introduction of ash as minor component in complex mixtures and the activation with highly concentrated alkaline solutions. This paper aims at improving the sustainability of ash conversion into inorganic polymers with adequate strength-to-density ratio, by minimizing the addition of valuable compounds and including discarded material. Fine powders of volcanic ash from Mt Etna (Italy), in fact, were activated with NaOH solutions at low molarity (3 M), with a variable water/solid ratio (0.35-0.42), after mixing with waste glass powders, from cullet purification. The adopted ash/glass proportion (50 wt%-50 wt%) was intended to favour the reuse of inorganic polymers, by firing at 950 degrees C, in turn causing the transformation into porous glass-ceramics with a remarkable strength-to-density ratio. A significant foaming was effectively observed, due to decomposition of hydrated alkali alumino-silicates developed upon hardening. Foams with excellent strength-to-density ratio were also obtained by thermal transformation of highly porous cold consolidated materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据