4.7 Article

Data-driven decision support tool for production planning: a framework combining association rules and simulation

期刊

COMPUTERS IN INDUSTRY
卷 144, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.compind.2022.103800

关键词

Decision support tool; Association Rules; Simulation; Data -driven; Production

向作者/读者索取更多资源

Guaranteeing a wide range of products and fast delivery is a major challenge for industries today. This study proposes a framework that combines association rule mining and simulation to help companies identify production process issues and validate the results through data-driven simulation. The framework's key value lies in its ease of adaptability and iterative application for continuous improvement.
Nowadays, guaranteeing the highest product variety in the shortest delivery time represents one of the main challenges for most of industries. The dynamic contexts where they have to compete push them to quickly readapt their processes, increasing the need for reactive decision-support tools to identify targeted actions to improve performance. Starting from the analysis of existing decision-support tools separately adopting simula-tion or data mining techniques, a framework that combines Association Rule Mining (ARM) and simulation has been developed to capitalize on the benefits brought by both techniques. On the one hand, ARM supports companies in identifying the main criticalities that slow down production processes, such as different causes of stoppage, giving a priority ranking of interventions. On the other hand, data-driven simulation is used to validate the ARM results and to conduct scenario analyses to compare the KPIs values resulting from different configu-rations of the production processes. Once the best-impacting mitigating actions have been implemented, the proposed framework can be iteratively used to define an updated set of intervention areas to enhance, promoting continuous improvement. This data-driven approach represents the key value of the framework, guaranteeing its easy-to-readapt and iteratively application. Theoretical contributions refer to the use of simulation with ARM not only to validate relations but to perform scenario analyses in an iterative way, as well as to the novelty appli-cation in a low-tech sector. From a practical point of view, a case study in the fashion industry demonstrates the usability and reliability of the proposed framework.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据