4.7 Article

Denoising of three-dimensional fast spin echo magnetic resonance images of knee joints using spatial-variant noise-relevant residual learning of convolution neural network

期刊

COMPUTERS IN BIOLOGY AND MEDICINE
卷 151, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2022.106295

关键词

3D FSE; Denoising; Number of excitation; Residual learning; Neural network; Knee MRI

资金

  1. Innovation and Technology Commission of the Hong Kong SAR
  2. Faculty Innovation Award
  3. Chinese University of Hong Kong
  4. Research Grants Council of the Hong Kong SAR
  5. [MRP/001/18X]
  6. [SEG CUHK02]

向作者/读者索取更多资源

This study developed a deep learning-based denoising method using true noise information from 2-NEX acquisitions to suppress noise in 3D FSE MR images of knee joints. The method showed promise for improving denoising performance and image quality.
Purpose: Two-dimensional (2D) fast spin echo (FSE) techniques play a central role in the clinical magnetic resonance imaging (MRI) of knee joints. Moreover, three-dimensional (3D) FSE provides high-isotropicresolution magnetic resonance (MR) images of knee joints, but it has a reduced signal-to-noise ratio compared to 2D FSE. Deep-learning denoising methods are a promising approach for denoising MR images, but they are often trained using synthetic noise due to challenges in obtaining true noise distributions for MR images. In this study, inherent true noise information from two number of excitations (2-NEX) acquisition was used to develop a deep-learning model based on residual learning of convolutional neural network (CNN), and this model was used to suppress the noise in 3D FSE MR images of knee joints.Methods: A deep learning-based denoising method was developed. The proposed CNN used two-step residual learning over parallel transporting and residual blocks and was designed to comprehensively learn real noise features from 2-NEX training data.Results: The results of an ablation study validated the network design. The new method achieved improved denoising performance of 3D FSE knee MR images compared with current state-of-the-art methods, based on the peak signal-to-noise ratio and structural similarity index measure. The improved image quality after denoising using the new method was verified by radiological evaluation.Conclusion: A deep CNN using the inherent spatial-varying noise information in 2-NEX acquisitions was developed. This method showed promise for clinical MRI assessments of the knee, and has potential applications for the assessment of other anatomical structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据