4.7 Article

Asymmetry-enhanced attention network for Alzheimer?s diagnosis with structural Magnetic Resonance Imaging

期刊

COMPUTERS IN BIOLOGY AND MEDICINE
卷 151, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2022.106282

关键词

Alzheimer?s disease; Brain asymmetry; Classification; Magnetic resonance imaging

资金

  1. Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health) [U01 AG024904]
  2. DOD ADNI (Department of Defense) [W81XWH-12-2-0012]
  3. National Institute on Aging
  4. National Institute of Biomedical Imaging and Bioengineering
  5. AbbVie
  6. Alzheimer's Association
  7. Alzheimer's Drug Discovery Foundation
  8. Araclon Biotech
  9. BioClinica, Inc.
  10. Biogen
  11. Bristol-Myers Squibb Company
  12. CereSpir, Inc.
  13. Cogstate
  14. Eisai Inc.
  15. Elan Pharmaceuticals, Inc.
  16. Eli Lilly and Company
  17. EuroImmun
  18. F. Hoffmann-La Roche Ltd
  19. Genentech, Inc.
  20. Fujirebio
  21. GE Healthcare
  22. IXICO Ltd.
  23. Janssen Alzheimer Immunotherapy Research & Development, LLC.
  24. Johnson & Johnson Pharmaceutical Research & Development LLC.
  25. Lumosity
  26. Lundbeck
  27. Merck Co., Inc.
  28. Meso Scale Diagnostics, LLC.
  29. NeuroRx Research
  30. Neurotrack Technologies
  31. Novartis Pharmaceuticals Corporation
  32. Pfizer Inc.
  33. Piramal Imaging
  34. Servier
  35. Takeda Pharmaceutical Company
  36. Transition Therapeutics
  37. Canadian Institutes of Health Research
  38. National Natural Science Foundation of China [61871106, 61370152]
  39. Key R&D projects of Liaoning Province, China [2020JH2/10100029]
  40. Open Project Program Foundation of the Key Laboratory of Opto-Electronics Information Processing, Chinese Academy of Sciences [OEIP-O-202002]

向作者/读者索取更多资源

This study proposed an asymmetry enhanced attention network for Alzheimer's disease diagnosis, effectively combining brain anatomical asymmetry characteristics to enhance classification accuracy. The method achieved performance improvements on two databases and provides valuable reference for other neurological diseases.
Background and objective: With the aging of the global population becoming severe, Alzheimer's disease (AD) has become one of the world's most common senile diseases. Many studies have suggested that the brain's left-right asymmetry is one of the possible diagnostic landmarks for AD. However, most published approaches to classification problems may not adequately explore the asymmetry between the left and right hemispheres. At the same time, the relationship between asymmetry traits and other classifier features remains understudied.Methods: In this paper, we proposed an asymmetry enhanced attention network (ASEAN) for AD diagnosis that effectively combines the anatomical asymmetry characteristics of the brain to enhance the accuracy and stability of classification tasks. First, we proposed a multi-scale asymmetry feature extraction module (MSAF) that can extract the asymmetry features of the brain from various scales. Second, we proposed an asymmetry refinement module (ARM) that considers the dependency between feature maps to suppress the irrelevant regions of the asymmetric feature maps. In addition, a parameter-free attention module was introduced to infer 4D attention weights and improve the network's representation capability.Results: The proposed method achieved performance improvements on two databases: Alzheimer's Disease Neuroimaging Initiative (ADNI) and Australian Imaging, Biomarkers and Lifestyle (AIBL). For the classification tasks on ADNI, the proposed method achieves 92.1% accuracy, 96.2% sensitivity, and 91.3% specificity on the AD vs. CN (Cognitively Normal) task. Compared with state-of-the-art methods, the proposed method could achieve comparable results. Conclusion: The proposed model can extract long-range left-right brain similarity as complementary informa-tion and improve the model's diagnostic performance. A large number of experiments also support the model's validity. At the same time, this work provides a valuable reference for other neurological diseases, particularly those that exhibit left-right brain asymmetry during development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据