4.7 Article

A methodology to predict the run-out distance of submarine landslides

期刊

COMPUTERS AND GEOTECHNICS
卷 153, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compgeo.2022.105073

关键词

Submarine landslide; Run -out distance; CFD method; Ambient water; Seabed; Evaluation methodology

向作者/读者索取更多资源

In this study, the method of computational fluid dynamics (CFD) was used to simulate a fluidized submarine landslide with shear thinning non-Newtonian fluids under different contact conditions. The accuracy of the CFD method was validated and various experiments were systematically performed. The stress state and causes of the submarine landslide mass during its movement in ambient water were revealed, and the submarine landslide-seabed contact relation was identified as a decisive influencing factor. Furthermore, a methodology based on energy conservation was presented to predict the run-out distance of the submarine landslide mass, and equations to quantify the process were established and validated by numerical results. This provides a significant basis for the prediction of marine engineering geological and hydrodynamic hazards related to submarine landslides.
In this paper, the method of computational fluid dynamics (CFD) is proposed to simulate a fluidized submarine landslide with shear thinning non-Newtonian fluids over a seabed under different contact conditions in the ambient water. The CFD method is first validated using data of physical channel and non-Boussinesq lock-ex-change experiments with different rheological characteristics and is found to provide good accuracy. Various CFD-based experiments with different initial velocities of the submarine landslide and different seabed contact conditions are then performed systematically. During the movement of the submarine landslide in ambient water, stress state and causes of the submarine landslide mass are revealed, and the submarine landslide-seabed contact relation is clarified as a decisive influencing factor. Furthermore, based on the principle of energy conservation, a methodology to predict the run-out distance of the submarine landslide mass by using the initial geometry of the submarine landslide masses with different scales and the total initial kinetic energy (including the initial kinetic energy and the gravitational potential energy difference caused by the self-slumping) of the submarine landslide mass is presented, equations to quantify the process are established, and the proposed methodology and equations are validated by the numerical result, which provides a significant basis for the prediction of marine engineering geological and hydrodynamic hazards with special reference to submarine landslides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据