4.7 Article

What We Observe In Vivo Is Not Always What We See In Vitro: Development and Validation of 11C-JNJ-42491293, A Novel Radioligand for mGluR2

期刊

JOURNAL OF NUCLEAR MEDICINE
卷 58, 期 1, 页码 110-116

出版社

SOC NUCLEAR MEDICINE INC
DOI: 10.2967/jnumed.116.176628

关键词

PET; mGluR2; positive allosteric modulator; specificity; knockout models

资金

  1. Johnson & Johnson Pharmaceutical Research & Development, L.L.C.

向作者/读者索取更多资源

Positive allosteric modulator's (PAM) of metabotropic glutamate receptor 2 (mGluR2) are a potential therapy for anxiety, schizophrenia, and addiction. Aside from pathophysiologic imaging studies, an mGluR2 PET tracer would enable confirmation of sufficient central target engagement and assist dose selection for proof-of-concept studies of PAM compounds. C-11-JNJ-42491293, a novel high-affinity radioligand (human 50% inhibitory concentration = 9.6 nM) for the PAM site of mGluR2, was evaluated as a selective mGluR2 PAM PET tracer. Methods: In vitro and ex vivo autoradiography binding experiments in Wistar and in mGluR2 knockout and wildtype rats as well as in vivo biodistribution and brain PET imaging studies in wildtype and mGluR2 knockout rats in a primate and in humans were performed. Results: In vitro binding studies and in vivo imaging studies in Wistar rats showed moderate brain uptake, with a distribution pattern fully consistent with the reported intracerebral distribution of mGluR2. Given these promising findings, biodistribution, dosimetry, and brain kinetic modeling of C-11-JNJ-42491293 were determined in humans. Because of an unexpected high myocardial retention, additional C-11-JNJ-42491293 imaging studies were performed in recently available mGluR2 knockout and wildtype rats and in a monkey using a structurally distinct mGluR2 PAM ligand with affinity for the same site, demonstrating off-target binding in vivo that could not have been anticipated from previous in vitro experiments. To date, the target of this non-mGluR2 tracer binding remains unknown. Conclusion: On the basis of in vivo selectivity issues suggested by human distribution and demonstrated in knockout rat models, C-11-JNJ-42491293 was considered unsuitable as a specific PET ligand for in vivo imaging of mGluR2. These results emphasize the importance of elaborated in vitro/in vivo comparative studies and, when available, validation with knockout animal models or structurally distinct ligands with affinity for the same site, in radiotracer development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据