4.5 Article

Fast Bayesian inference on spectral analysis of multivariate stationary time series

期刊

出版社

ELSEVIER
DOI: 10.1016/j.csda.2022.107596

关键词

Multivariate time series; Spectral analysis; Stochastic gradient variational Bayes; Global -local shrinkage prior

向作者/读者索取更多资源

A novel Bayesian framework is proposed for spectral analysis of multivariate time series, providing computational flexibility and higher posterior accuracy.
Spectral analysis discovers trends, periodic and other characteristics of a time series by representing these features in the frequency domain. However, when multivariate time series are considered, and the number of components increases, the size of the spectral density matrix grows quadratically, making estimation and inference rather challenging. The proposed novel Bayesian framework considers a Whittle likelihood -based spectral modeling approach and imposes a discounted regularized horseshoe prior on the coefficients that define a spline representation of each of the components of a Cholesky factorization of the inverse spectral density matrix. The proposed prior structure leads to a model that provides higher posterior accuracy when compared to alternative currently available approaches. To achieve fast inference that takes advantage of the massive power of modern hardware (e.g., GPU), a stochastic gradient variational Bayes approach is proposed for the highly parallelizable posterior inference that provides computational flexibility for modeling high-dimensional time series. The accurate empirical performance of the proposed method is illustrated via extensive simulation studies and the analysis of two datasets: a wind speed data from 6 locations in California, and a 61 -channel electroencephalogram data recorded on two contrasting subjects under specific experimental conditions. (C) 2022 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据