4.7 Article

Hybrid thermal modeling of additive manufacturing processes using physics-informed neural networks for temperature prediction and parameter identification

期刊

COMPUTATIONAL MECHANICS
卷 72, 期 3, 页码 499-512

出版社

SPRINGER
DOI: 10.1007/s00466-022-02257-9

关键词

Machine learning; Data-driven model; Inverse problem; Directed energy deposition; Heat transfer

向作者/读者索取更多资源

Understanding the thermal behavior of additive manufacturing processes is crucial for quality control and process design. This study develops a hybrid physics-based data-driven thermal modeling approach using physics-informed neural networks. The results demonstrate the effectiveness of the model in identifying unknown parameters and accurately capturing the full-field temperature, making it suitable for iterative process design and real-time process control of additive manufacturing.
Understanding the thermal behavior of additive manufacturing (AM) processes is crucial for enhancing the quality control and enabling customized process design. Most purely physics-based computational models suffer from intensive computational costs and the need of calibrating unknown parameters, thus not suitable for online control and iterative design application. Data-driven models taking advantage of the latest developed computational tools can serve as a more efficient surrogate, but they are usually trained over a large amount of simulation data and often fail to effectively use small but high-quality experimental data. In this work, we developed a hybrid physics-based data-driven thermal modeling approach of AM processes using physics-informed neural networks. Specifically, partially observed temperature data measured from an infrared camera is combined with the physics laws to predict full-field temperature history and to discover unknown material and process parameters. In the numerical and experimental examples, the effectiveness of adding auxiliary training data and using the pretrained model on training efficiency and prediction accuracy, as well as the ability to identify unknown parameters with partially observed data, are demonstrated. The results show that the hybrid thermal model can effectively identify unknown parameters and capture the full-field temperature accurately, and thus it has the potential to be used in iterative process design and real-time process control of AM.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据