4.7 Article

Highly electro-responsive ionic soft actuator based on graphene nanoplatelets-mediated functional carboxylated cellulose nanofibers

期刊

COMPOSITES SCIENCE AND TECHNOLOGY
卷 231, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2022.109845

关键词

A; Nano composites; polymer -matrix composites; Polymer fibers; Smart materials; Ionic actuators

向作者/读者索取更多资源

In this study, we reported a novel highly electro-responsive ionic actuator based on functional carboxylated cellulose nanofibers (CCNF) doped with ionic liquid (IL) and graphene nanoplatelets (GN). The designed CCNF-IL-GN actuator exhibited large displacement, faster response time, broad frequency bandwidth, and long actuation durability, making it highly suitable for applications in bionic robots, soft robots, wearable electronics, and biomedical active devices.
Electro-responsive ionic soft actuators have attracted increasing interest owing to the promising applications for soft robots, biomimetic robots, active medical devices, flexible electronics, and wearable devices. However, existing ionic actuators still need a technology breakthrough for larger bending strain, faster response, and excellent actuation durability. Herein, we report a novel highly electro-responsive ionic actuator based on functional carboxylated cellulose nanofibers (CCNF) by doping with ionic liquid (IL) and graphene nanoplatelets (GN). The proposed CCNF-IL-GN actuator demonstrated a large tip displacement of 15.71 mm (peak-to-peak) at 2.0 V with 0.1 Hz, faster rise time (2.9s), broad frequency bandwidth (0.1-3.0 Hz), markedly reduced phase delay, and long actuation durability (98.6% retention for 3 h) without actuation response distortion, all of which were due to the fast-easy ion migration and massive charge transport ability of the designed ionically crosslinked electrolyte membrane, resulting from the strong ionic interactions and crosslinking of CCNF nanofibers with IL and GN. Furthermore, we investigated the actuator's bionic applications such as the bionic flower, bionic finger, and bionic window. These results elucidate the great potential of the designed CCNF-IL-GN actuators for bionic robots, soft robots, wearable electronics, and biomedical active devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据