4.7 Article

Spray coating for washout tooling by binder jet additive manufacturing

期刊

COMPOSITES PART B-ENGINEERING
卷 250, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2022.110436

关键词

-

向作者/读者索取更多资源

BJ-based washout tooling requires an impermeable barrier to prevent resin infiltration. We developed a polymer spray coating method using PVS-Na, which improves geometric tolerances, thermal stability, and significantly enhances production efficiency of complex washout tools.
Washout tooling is a process in which a removable mold or fixture is disintegrated using a solvent. Binder Jet (BJ) additive manufacturing holds promise for creating customized washout molds from common materials. BJ-based washout tooling provides an advanced strategy in manufacturing fiber-reinforced composites (FRCs), especially for customized hollow FRCs. However, washout tools formed by BJ require an impermeable barrier between the porous tooling surface and the parts laid up on the surface to prevent the resin from infiltrating the tooling surface and bonding the tool to the FRC. The conventional method for preventing resin migration into the washout mold from the FRC is winding Teflon (R) tape over the entire surface, which is labor-intensive and very difficult to deploy for specific geometries. Here, we report the development of a polymer spray coating method to seal the tooling surface and prevent resin infiltration without affecting the washout properties needed for sacrificial tooling. Two water-soluble polymers, poly(sodium 4-styrenesulfonate) (PSS-Na) and poly(vinylsulfonic acid, sodium salt) (PVS-Na), were investigated for spray coating. PVS-Na maintained tighter geometric tolerances and provided excellent thermal stability with the onset of decomposition at 320 C and glass transition temperature of 280 C. Spray coating with PVS-Na streamlines the process of forming a protective layer for the washout molds by BJ, reduces migration of the resins from the FRC, and significantly improves the production efficiency of complex washout tools.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据