4.7 Article

Analysis and validation of a scaled, launch-vehicle-like composite cylinder under axial compression

期刊

COMPOSITE STRUCTURES
卷 304, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2022.116393

关键词

Composite cylindrical shell; Unconventional layup; Test; Buckling propagation; Measured imperfection

向作者/读者索取更多资源

Developing a validated finite element modeling methodology is important for the design and analysis of composite launch-vehicle shell structures. This can be achieved by correlating numerical models with test data and considering as-built features. Understanding the parameters and details required to accurately predict buckling behavior is crucial, especially for critical shells.
Launch vehicle structures, such as payload adapters and interstages, are increasingly designed and constructed using composite materials due to their high stiffness- and strength-to-weight ratios. Therefore, it is important to develop a validated finite element modeling methodology for designing and analyzing composite launch-vehicle shell structures. This can be achieved, in part, by correlating high-fidelity numerical models with test data. Buckling is often an important failure mode for cylindrical shells, and the buckling response of such structures is also often quite sensitive to imperfections in geometry and loading. Hence, it is crucial to understand the model parameters and details required to accurately predict the buckling load and behavior of composite cylindrical shells, especially if the shell is buckling critical. The inclusion of as-built features, such as radial imperfections, thickness variations, and loading imperfections can help improve the correlation between test and analysis. To demonstrate such an approach, a validated modeling methodology that was used to predict the buckling behavior of a scaled component for a launch-vehicle-like structure is presented, and results from the model are compared with experimental results. The modeling approach presented herein was used to successfully predict the buckling behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据