4.7 Review

Review on lattice structures for energy absorption properties

期刊

COMPOSITE STRUCTURES
卷 304, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2022.116397

关键词

Lattice; Porous structure; Multi -cell structure; Honeycomb; Energy absorption

向作者/读者索取更多资源

This paper reviews and discusses the research on energy absorption characteristics of lattice structures in recent years. It summarizes the performance evaluation indexes and loading conditions, classifies the lattice structures, introduces their energy absorption properties, fabrication process, and engineering application, and predicts the future research direction. It provides a useful platform for designing energy absorbed lattice structures and offers a basis for developing new excellent energy absorbed lattice structures.
Porous/multi-cell structures are widely used in practical engineering due to their excellent energy absorption capacity and lightweight. In recent decades, as an important member of porous structures, lattice structure is found to have extremely excellent energy absorption capacity per unit mass. It has become a hot spot in the research of porous structures for energy absorption properties. There are more and more studies on energy absorption characteristics of lattice structures in the world. This paper reviews and discusses the research work on the energy absorption characteristics of lattice structures in recent years. Firstly, the performance evaluation indexes and loading conditions for energy absorption of the lattice structures are summarized. Then, the lattice structures in the current research literature are classified, and the lattice structures are divided into 2D lattice structure and 3D lattice structure. The 2D lattice structures are divided into general structure, auxetic structure and hierarchical structure, while the 3D lattice structures are divided into truss-based, plate-based, shell-based and hierarchical 3D lattice structure. Furthermore, the energy absorption properties of different types of 2D and 3D lattice structures are introduced in detail. Then, the fabrication process and the engineering application for energy absorption of the lattice structures are introduced. Finally, the future research direction of energy absorption of lattice structure is predicted. Therefore, this work provides a useful platform for researchers and engineers to design energy absorbed lattice structures, and provides a basis for developing new excellent energy absorbed lattice structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据