4.7 Article

Buckling induced negative stiffness mechanical metamaterial for bandgap tuning

期刊

COMPOSITE STRUCTURES
卷 304, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2022.116421

关键词

Negative stiffness; Mechanical metamaterial; Wave propagation; Bandgap tuning

向作者/读者索取更多资源

This paper investigates a negative-stiffness mechanical metamaterial consisting of reconfigurable beam elements that can tune its bandgap through deformation. The study shows that the metamaterial exhibits different band structures and band gap ranges under different deformation states, allowing for bandgap tuning. The research provides a new avenue for the design and study of negative-stiffness mechanical metamaterials with bandgap tuning capabilities.
Negative-stiffness mechanical metamaterials that can achieve bandgap tuning are a novel area of intense interest, enabling vibration control as well as a wide range of mechanical properties. In this paper, a negative-stiffness mechanical metamaterial consists of beam elements that can be reconfigured for large deformations and the bandgap can be tuned by its deformation behavior. The deformation process of the proposed negative-stiffness metamaterial under uniaxial compression, as well as the band structure and vibration characteristics of the metamaterial under different deformation states are analyzed by a combination of numerical simulation and experiment. The research results show that the proposed negative-stiffness metamaterial suffers from buckling instability and large deformation during uniaxial compression., and has different band structures and band gap ranges under different deformation states. Thus, bandgap tuning can be achieved by the deformation of negative stiffness metamaterials. Furthermore, negative stiffness metamaterials with different angles exhibit different results in bandgap tuning. Finally, the performance of vibration transfer is verified by experiments. This study may provide a new avenue for the related research and design of negative-stiffness mechanical metamaterials with bandgap tuning capabilities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据