4.6 Article

Fullerene carbon nanostructures for the delivery of phenelzine derivatives as new drugs to inhibit monoamine oxidase enzyme: Molecular docking interactions and density functional theory calculations

出版社

ELSEVIER
DOI: 10.1016/j.colsurfa.2022.130599

关键词

Molecular docking; DFT; QTAIM; Monoamine oxidase; Phenelzine; Fullerenes

向作者/读者索取更多资源

This study used molecular docking technique to investigate the interactions between phenelzine and its derivatives with monoamine oxidase, and explored the feasibility of carbon nanostructures as drug carriers. The results showed that nanostructures could serve as carriers for phenelzine derivatives and potentially be used as new drugs to inhibit monoamine oxidase.
In this study, a molecular docking technique was used to investigate the interactions of phenelzine (P) and its derivatives, namely N-Nitrosobenzylmethylamine (P4) and [2-(4-Isopropylphenyl) ethyl] hydrazine (P9), with the enzyme monoamine oxidase. The development of new MAO-A and MAO-B inhibitors was the main goal of this research. Moreover, carbon nanostructures, including C30, C60, and C90 fullerenes, were studied as carriers of P, P4, and P9 using density functional theory (DFT). The larger adsorption energy (Eads) in the water phase for adsorption of P onto the nanostructures than in the gas phase suggested that the water phase leads to a stronger interaction of P with the nanostructures. In contrast, P4 and P9 interacted more strongly with the nanostructures in the gas phase. The values of Eads also showed weak interaction of P, P4, and P9 with the nanostructure, confirming that they can be used as carriers for the molecules. The analysis of density of states (DOS) indicated that C60 can be used as a strong sensor for P. Furthermore, the quantum theory of atoms in molecules confirmed that the interactions are via Van der Waals, which are considered weak interactions. In conclusion, the fullerene nanostructures presented in this study can be used as carriers of phenelzine derivatives as new drugs to inhibit monoamine oxidase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据