4.5 Review

Electrolyte Engineering for Safer Lithium-Ion Batteries: A Review

期刊

CHINESE JOURNAL OF CHEMISTRY
卷 41, 期 9, 页码 1119-1141

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cjoc.202200588

关键词

Thermal runaway; Lithium battery; Flame retardant; Polymer electrolyte; Solid-state electrolyte; Electrolyte additives; Electrode material; Thermal stability

向作者/读者索取更多资源

Despite being widely used, the safety issue of lithium-ion batteries (LIBs) is a major barrier for their application in EVs or large-scale energy storage. This study summarizes the mechanisms of thermal runaway and recent progress in electrolyte engineering for LIBs, including adding flame-retardants, using ionic liquid electrolytes, and solid electrolytes. It also discusses the strengths, weaknesses, and new directions for designing safer electrolytes.
Comprehensive SummaryDespite being widely used in people's daily life, the safety issue of lithium-ion batteries (LIBs) has become the major barrier for them to be applied in electrical vehicles (EVs) or large-scale energy storage. Typically, due to the use of liquid electrolytes containing flammable solvents which are easily oxidized by excessive and accumulated heat, the potential thermal runaway is a major safety concern for traditional LIBs. A strategy for a safer electrolyte design is controlling the flammability and volatility of the liquid electrolytes, to effectively prevent thermal runaway, thus avoiding fire or other risks. Through this study, the mechanisms of thermal runaway and the recent progress in electrolyte engineering toward LIBs were summarized, covering the major strategies including adding flame-retardants, the utilization of ionic liquid electrolytes and solid electrolytes. The characteristics, strengths and weaknesses of different strategies were discussed. New designing directions of safer electrolytes for the LIBs were also provided.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据