4.7 Article

Heterojunction photocatalysts for the removal of nitrophenol: A systematic review

期刊

CHEMOSPHERE
卷 310, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.136853

关键词

Heterojunction; Nitrophenol; Z -scheme; Reusability; Quantum yield

向作者/读者索取更多资源

This review summarizes the recent progress on heterojunction photocatalysts for eliminating nitrophenols, highlighting the mechanisms of electron-hole pair separation and evaluating the performance of the photocatalysts. The results show that Z-scheme heterojunction exhibits the highest removal efficiency, and further research is needed to improve the reusability of the heterojunction photocatalyst.
Nitrophenols are the most widely used raw materials in the chemical, pesticide, and pharmaceutical industries. Due to improper waste management and excessive usage, nitrophenol is listed as a priority pollutant and garnered global research attention. This review highlights the recent progress on heterojunction photocatalysts toward eliminating nitrophenols. The detailed mechanisms of the electron-hole pair separation using different heterojunctions such as traditional, p-n, Z-scheme, S-scheme, and Schottky heterojunctions are elaborated. The performance of the photocatalysts is evaluated using quantum efficiency. Among the heterojunctions, Z-scheme exhibited maximum removal efficiency of 100% and found superior over other heterojunctions. Even though heterojunctions exhibit good efficiency, the reusability of the heterojunction photocatalyst is not reported beyond 5 cycles. Further research is indeed to develop a highly reusable photocatalyst for environmental remediation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据