4.7 Article

Silver nanoparticles modified ZnO nanocatalysts for effective degradation of ceftiofur sodium under UV-vis light illumination

期刊

CHEMOSPHERE
卷 313, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.137515

关键词

1D ZnO nanorods; Plasmonic Ag -ZnO nanostructures; Antibiotics contamination; Ceftiofur sodium; Photocatalytic oxidation

向作者/读者索取更多资源

The addition of silver-coated zinc oxide nanostructures in the photocatalytic degradation of ceftiofur sodium enhances the catalytic activity and ability to remove pharmaceutical wastewater.
Light-induced photocatalytic degradation of ceftiofur sodium (CFS) has been assessed in the presence of plas-monic zinc oxide nanostructures (ZnONSTs), like, ZnO nanoparticles, ZnO nanorods (ZnONRs) and ZnO nano -flowers (ZnONFs). Silver nanoparticles (Ag NPs) loaded ZnO nanostructures (Ag-ZnONSTs) are obtained through seed-assisted chemical reaction followed by chemical reduction of silver. The surface modification of ZnO nanostructures by Ag NPs effectually altered their optical properties. Further, the surface plasmonic effect of Ag NPs facilitates visible light absorption by ZnONSTs and improved the photogenerated electron and hole separation, which makes the ZnONSTs a more active photocatalyst than TiO2 (P25) nanoparticles. Especially, Ag-ZnONRs showed higher CFS oxidation rate constant (k' = 4.6 x 10-4 s-1) when compared to Ag-ZnONFs (k' = 2.8 x 10-4 s-1) and Ag-ZnONPs (k' = 2.5 x 10-4 s-1), owing to their high aspect ratio (60:1). The unidirectional transport of photogenerated charge carriers on the Ag-ZnONRs may be accountable for the observed high photocatalytic oxidation of CFS. The photocatalytic oxidation of CFS mainly proceeds through center dot OH radicals generated on the Ag-ZnONRs surface under light illumination. In addition, heterogeneous activation of perox-ymonosulfate by Ag-ZnONRs accelerates the rate of photocatalytic mineralization of CFS. The quantification of oxidative radicals supports the proposed CFS oxidation mechanism. Stability studies of plasmonic Ag-ZnONSTs strongly suggests that it could be useful to clean large volume of pharmaceutical wastewater under direct solar light irradiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据