4.7 Article

Effects of a redox-active diketone on the photochemical transformation of roxarsone: Mechanisms and environmental implications

期刊

CHEMOSPHERE
卷 308, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.136326

关键词

Acetylacetone; Organoarsenics; Photodegradation; Dissolved oxygen; Photoionization

资金

  1. Key Technologies Research and Development Program of the Ministry of Science and Technology of the People?s Republic of China
  2. National Natural Science Foundation of China
  3. [2018YFC1802003]
  4. [21976083]
  5. [22176087]
  6. [22106068]

向作者/读者索取更多资源

Organoarsenical antibiotics pose a severe threat to the environment and human health. In aquatic environment, dissolved organic matter (DOM)-mediated photochemical transformation is one of the main processes in the fate of organoarsenics. The presence of acetylacetone significantly enhances the photochemical conversion of roxarsone.
Organoarsenical antibiotics pose a severe threat to the environment and human health. In aquatic environment, dissolved organic matter (DOM)-mediated photochemical transformation is one of the main processes in the fate of organoarsenics. Dicarbonyl is a typical redox-active moiety in DOM. However, the knowledge on the photoconversion of organoarsenics by DOM, especially the contributions of dicarbonyl moieties is still limited. Here, we systematically investigated the photochemical transformation of three organoarsenics with the simplest-beta-diketone, acetylacetone (AcAc), as a model dicarbonyl moiety of DOM. The presence of AcAc significantly enhanced the photochemical conversion of roxarsone (ROX), whereas only minor effects were observed for 3-amino-4-hydroxyphenylarsonic acid (HAPA) and arsanilic acid (ASA), because the latter two (with an amino (-NH2) group) are more photoactive than ROX (with a nitro (-NO2) group). The results demonstrate that AcAc was a potent photo-activator and the reduction of -NO2 to -NH2 might be a rate-limiting step in the phototransformation of ROX. At a 1:1 M ratio of AcAc to ROX, the photochemical transformation rate of ROX was increased by 7 folds. In O-2-rich environment, singlet oxygen, peroxide radicals, and center dot OH were the main reactive species that led to the breakage of the C-As bond in ROX and the oxidation of the released arsono group to arsenate, whereas the triplet-excited state of AcAc ((AcAc)-Ac-3*) and carbon-centered radicals from the photolysis of AcAc dominated in the reductive transformation of ROX. In anoxic environment, 3-amino-4-hydroxyphenylarsonic acid was one of the main reductive transformation intermediates of ROX, whose photolysis rate was about 35 times that of ROX. The knowledge obtained here is of great significance to better understand the fate of organoarsenics in natural environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据