4.7 Article

Legacy of contamination with metal(loid)s and their potential mobilization in soils at a carbonate-hosted lead-zinc mine area

期刊

CHEMOSPHERE
卷 308, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.136589

关键词

Carbonate-hostedPb-Zn mine; Soils; Metals; Mobility; Colloids

资金

  1. National Natural Science Foundation of China
  2. [U2002210]

向作者/读者索取更多资源

This study investigates the mobility of metal(loid)s in soils affected by aeolian deposition and river transport near a carbonate-hosted Pb-Zn mine, and finds that interactions between nano-scale colloids and metal(loid)s may lead to potential mobilization and increased risk.
Chemical weathering of carbonate-hosted Pb-Zn mines via acid-promoted or oxidative dissolution generates metal-bearing colloids at neutral mine drainage sites. However, the mobility and bioavailability of the colloids associated with metals in nearby soils are unknown. Here, we monitored the mobility of metal(loid)s in soils affected by aeolian deposition and river transport in the vicinity of a carbonate-hosted Pb-Zn mine. Using chemical extraction, ultrafiltration, and microscopic and spectroscopic analysis of metals we find that contam-ination levels of the soil metals cadmium (Cd), lead (Pb) and zinc (Zn) were negatively correlated with metal extractability. However, nano-scale characterization indicates that colloid-metal(loid) interactions induced po-tential mobilization and increased risk from metal(loid)s. Dynamic light scattering (DLS) and HRTEM-EDX-SAED analysis further indicate that organic matter (OM)-rich nano-colloids associated with calcium (Ca), silicon (Si) and iron (Fe) precipitates accounted for the majority of the dissolved metal fractions in carbonate-hosted Pb-Zn mine soils. More stable nano-crystals (ZnS, ZnCO3, Zn-bearing sulfates, hematite and Al-Si-Fe compounds) were present in the pore water of aeolian-impacted upland soils rather than in river water-impacted soils. Our results suggest that future work should consider the possibility that potential mobilization of metal(loid)s induced by the weathering and transformation of these metal-bearing nano-crystals to metal-bearing amorphous colloids, potentially elevating metal mobility and/or bioavailability in river water-impacted agricultural soils.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据