4.7 Article

Detection of SARS-CoV-2 in clinical and environmental samples using highly sensitive reduced graphene oxide (rGO)-based biosensor

期刊

CHEMICAL ENGINEERING JOURNAL
卷 453, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.139750

关键词

SARS-CoV-2; COVID-19; Wastewater; Biosensor; Reduced graphene oxide

向作者/读者索取更多资源

This study investigated the on-site detection of SARS-CoV-2 in municipal wastewater for the first time. A reduced graphene oxide (rGO)-based biosensor was developed and demonstrated rapid, sensitive, and selective detection of the virus. The biosensor showed feasibility in detecting SARS-CoV-2 in clinical samples as well as unfiltered and unprocessed municipal wastewater.
Quantitative RT-PCR (qRT-PCR) is the most commonly used diagnostic tool for SARS-CoV-2 detection during the COVID-19 pandemic. Despite its sensitivity and accuracy, qRT-PCR is a time-consuming method that requires expensive laboratories with highly trained personnel. In this work, on-site detection of SARS-CoV-2 in municipal wastewater was investigated for the first time. The wastewater was unprocessed and did not require any prefiltration, prior spiking with virus, or viral concentration in order to be suitable for use with the biosensor. The prototype reported here is a reduced graphene oxide (rGO)-based biosensor for rapid, sensitive and selective detection of SARS-CoV-2. The biosensor achieved a limit of detection (LOD) of 0.5 fg/mL in phosphate-buffered saline (PBS) and exhibited specificity when exposed to various analytes. The response time was measured to be around 240 ms. To further explore the capabilities of the biosensor in real clinical and municipal wastewater samples, three different tests were performed to determine the presence or absence of the virus: (i) qRT-PCR, (ii) a rapid antigen-based commercially available test (COVID-19 Test Strips), and (iii) the biosensor constructed and reported here. Taken together, our results demonstrate that a biosensor that can detect SARS-CoV-2 in clinical samples as well as unfiltered and unprocessed municipal wastewater is feasible.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据