4.7 Article

Ultralight carbon aerogel composites derived from MOFs and cross-linked chitosan: Synthesis, characterization, and U(VI) adsorption

期刊

CHEMICAL ENGINEERING JOURNAL
卷 455, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.140749

关键词

Chitosan; Carbon aerogel; Phosphorylation; Adsorption; Uranium; Wastewater

向作者/读者索取更多资源

In this study, an ultralight carbon aerogel material (CUCA/MPCs) derived from chitosan and MOFs was successfully prepared, and an adsorbent (CUCA/ MPCs-PO4) with a high chelation ability to U(VI) was synthesized through phosphorylation modification. The maximum adsorption capacities of the adsorbents for U(VI) were determined using the Langmuir isotherm model and pseudo-second-order kinetic model. Furthermore, the recyclability and potential practical applications of the adsorbents were evaluated.
An environmentally friendly and cost-effective adsorbent for removing U(VI) from radioactive wastewater is of significant importance for protecting the environment. In this work, we successfully prepared an ultralight carbon aerogel material (CUCA/MPCs) derived from chitosan and MOFs, and synthesized an adsorbent (CUCA/ MPCs-PO4) with a high chelation ability to U(VI) through phosphorylation modification. Various characterization techniques were used to characterize the microscopic morphology and crystallographic structure of the adsorbents. During the batch experiments, it was determined that the optimum pH for the adsorbents for U(VI) was 6.5. According to the linear Langmuir isotherm model and pseudo-second-order kinetic model, U(VI) adsorption on the adsorbent is a monolayer chemisorption reaction. The fitted maximum adsorption capacities of CUCA-PO4, CUCA/1MPCs-PO4, and CUCA/2MPCs-PO4 for U(VI) were 357.1 mg/g, 526.3 mg/g, and 592.0 mg/g, respectively. Furthermore, the three adsorbents showed good recyclability, maintaining 79.0 %, 77.4 %, and 82.2 % of the initial adsorption capacity after eight cycles, respectively. The results of actual U(VI) waste adsorption experiments showed that CUCA/2MPCs-PO4 achieved 92.2 % removal of U(VI), showing good potential for practical applications. Finally, the possible adsorption mechanism between U(VI) and adsorbent was discussed in the context of experimental and characterization results. Overall, this study provides a valuable research idea for the treatment of radioactive wastewater containing U(VI).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据