4.7 Article

Copper sulfide engineered covalent organic frameworks for pH-responsive chemo/photothermal/chemodynamic synergistic therapy against cancer

期刊

CHEMICAL ENGINEERING JOURNAL
卷 451, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.138864

关键词

Covalent organic frameworks; CuS; Chemodynamic therapy; Photothermal therapy; Synergistic therapy

向作者/读者索取更多资源

This study developed a multifunctional nanoplatform based on copper sulfide nanoparticles for synergistic photothermal therapy, chemotherapy, and chemodynamic therapy. The nanoplatform exhibited pH-dependent fluorescence behavior, mesoporous structure, and cancer-targeting efficiency, making it suitable for cancer cell imaging and drug delivery. The nanoplatform achieved a synergistic effect in PTT/chemotherapy/CDT and showed excellent therapeutic efficacy with negligible systemic toxicity.
Developing nanomedicines with high-performance is a promising therapeutic strategy for cancer treatment. Herein, a multifunctional nanoplatform (CuS@COFs-BSA-FA/DOX) based on copper sulfide nanoparticles engineered covalent organic frameworks (CuS@COFs) has been established for synergistic photothermal therapy (PTT), chemotherapy and chemodynamic therapy (CDT). The high photothermal effect and excellent Fenton-like catalytic activity enabled CuS@COFs to generate a new minimally invasive PTT/CDT synergistic therapy. Moreover, with the pH-dependent fluorescence behavior and the inherited mesoporous structure, the nano -composites can also be utilized as fluorescent probes for cancer cell imaging and drug-delivery carriers to encapsulate the chemotherapeutic agent, DOX. The densely coated PEI and BSA-FA layers on the surface of CuS@COFs not only increased the cancer-targeting efficiency but also prevented the nonspecific release of DOX from CuS@COFs. The acid tumor microenvironment and near-infrared light triggered the release of DOX for chemotherapy, which simultaneously augmented the CDT efficiency of CuS@COFs. Notably, the localized hy-perthermia induced by PTT can further improve the CDT efficiency of the nanoplatform, leading to a synergistic PTT/chemotherapy/CDT effect. The nanoplatform possessed the capability of cancer cell-targeted imaging and achieved better therapeutic efficacy with negligible systemic toxicity both in vitro and in vivo. Our work opens up a powerful avenue for developing multifunctional COFs-based theranostic platform and shows strong potential in practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据