4.7 Article

Lithiophilic Zn-doped CuO/ZnO nanoarrays modified 3D scaffold inducing lithium lateral plating achieving highly stable lithium metal anode

期刊

CHEMICAL ENGINEERING JOURNAL
卷 451, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.138410

关键词

Lithium metal anode; Redox electrochemistry; 3D scaffold; Lithium lateral plating

向作者/读者索取更多资源

The 3D ZZCM structure modified lithium metal anode achieves uniform deposition of lithium, suppresses the growth of lithium dendrites, alleviates volume expansion, and improves the charge transfer and interfacial resistance. The Li/3D ZZCM composite anode shows stable cycling performance and excellent rate capability under high current densities and large capacities.
Commercial applications of lithium (Li) metal anodes are limited by the continuous presence of Li dendrites and infinite volume variation during the plating/stripping process. Herein, the three-dimensional Zn-doped CuO/ZnO nanoarrays modified mesh (3D ZZCM) is prepared via redox electrochemistry method and Li/3D ZZCM composite anode is prepared by pressing 3D ZZCM on Li foil. The Li/3D ZZCM with uniformly distributed lithiophilic sites, induces Li lateral plating, which effectively suppresses the growth of Li dendrites and alleviates the volume expansion. The doping of zinc can further improve the charge transfer and reduce the interfacial resistance, promoting the redox reaction kinetics and reversibility of Li plating/stripping. Therefore, the Li/3D ZZCM composite anode achieves a stable cycle with low overpotential over 535 h even at 40 mA cm(-2) with 10 mA h cm(-2). And the dendrite-free uniform deposition process of Li/3D ZZCM anode is observed by in-situ optical dynamic test. When assembled with commercial LiCoO2, the Li/3D ZZCM parallel to LiCoO2 full-cell demonstrates ultra-high cycle stability (81.8 % capacity retention after 600 cycles at 1C) and excellent rate performance, highlighting the great significance of Li/3D ZZCM anode for high energy density and safe Li metal batteries (LMBs).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据