4.7 Article

High-flux CO2 separation using thin-film composite polyether block amide membranes fabricated by transient-filler treatment

期刊

CHEMICAL ENGINEERING JOURNAL
卷 455, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.140883

关键词

Polyether block amide; CO2 separation membrane; Thin-film composite membrane; Polyethylene glycol; Transient filler

向作者/读者索取更多资源

This article investigates an energy-efficient and eco-friendly membrane-based CO2 separation process. Thin-film composite (TFC) membranes with a defect-free, ultra-thin, and highly permeable selective layer were successfully manufactured through transient-filler (TF) treatment. The resulting TFC membrane showed significantly improved gas permeance, making it a promising material for CO2 separation.
An energy-efficient and eco-friendly membrane-based CO2 separation process is required to address global concerns pertaining to energy and environment. In this context, polymer materials such as polyimides, polyvinyl alcohol, and polyether block amide (PEBA) have been intensively explored, and a high CO2 selectivity has been attained; however, these membranes exhibit a low permeance, thereby hindering process efficiency. Gas per-meance depends mainly on the thickness and morphology of the selective layer; but it is difficult to overcome the limitation of the intrinsic permeability of the polymer material by controlling the thickness of the selective layer. Herein, we report a method for manufacturing thin-film composite (TFC) membranes with a defect-free, ultra-thin, and highly permeable selective layer through transient-filler (TF) treatment consisting of blending a TF/ polymer matrix and then removing the TF. Polyethylene glycol (PEG), used as the TF, was homogeneously blended through hydrogen bonding with the polymer matrix, PEBA. The blended membrane, PEG/PEBA, possessed a less crystalline structure than that of PEBA and a large free volume, thereby exhibiting a high gas permeance. After the removal of the TF from PEG/PEBA, the resultant PEBA (r-PEBA) retained the less crystalline structure, and the thickness of the selective layer decreased substantially. The permeance of the r-PEBA TFC membrane, 2371 GPU, was substantially higher than that of neat PEBA, 1350 GPU, owing to the aforementioned synergistic effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据