4.7 Article

Cancer cell membrane biomimetic mesoporous silica nanotheranostics for enhanced Ferroptosis-mediated immuogenic cell death on Gastric cancer

期刊

CHEMICAL ENGINEERING JOURNAL
卷 455, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.140868

关键词

Ferroptosis; Immunogenic cell death; Gastric cancer; Homologous targeting

向作者/读者索取更多资源

A cancer targeted cascade nanosystem (CMnMPt) was constructed using Mn ions-doped mesoporous silica nanoparticles (Mn@MSN) and cisplatin prodrug (Pt(IV)), with cancer cell membrane cloaking. This nanosystem could induce ferroptosis-mediated immunogenic cell death (ICD) and enhance immunotherapy efficiency.
Selective induction of ferroptosis of cancer cells would be a promising approach to trigger immunogenic cell death (ICD) and sequentially potentiate immunotherapy. Actually, the efficiency to produce toxic lipid peroxides (LPO) and deplete glutathione (GSH) at the tumor site plays a key role in inducing ferroptosis. Herein, a cancer targeted cascade nanosystem (CCM@Mn@MSN-Pt(IV), CMnMPt) was constructed for synergistic chemo-dynamic and chemotherapy by conjugating Mn ions-doped mesoporous silica nanoparticles (Mn@MSN) and cisplatin prodrug (Pt(IV)), with cancer cell membrane cloaking. Owing to the bio-mimetic surface functionali-zation, the immune escape and homologous targeting behaviors of CMnMPt would dramatically enhance its cancer targeting and retention abilities. Once internalized by cancer cells, intracellular GSH would be depleted attributed to the bio-degradation of Mn@MSN and reduced of Pt(IV), resulting in Mn2+ release and cisplatin transform (from Pt(IV) to Pt(II)). Subsequently, generated Pt(II)) could damage nuclear DNA, and further acti-vate nicotinamide adenine dinucleotide phosphate oxidases (NOXs) to enhance downstream H2O2 levels. Additionally, Mn2+ ions could catalyze H2O2 into highly reactive hydroxyl radical (center dot OH), which results in a further increase in LPO content. In summary, CMnMPt could induce ferroptosis-mediated ICD, and recruit cytotoxic T lymphocytes cells, offering potential clinical applications to facilitate anti-tumor immunotherapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据