4.7 Article

Enhanced electronic interaction between iron phthalocyanine and cobalt single atoms promoting oxygen reduction in alkaline and neutral aluminum-air batteries

期刊

CHEMICAL ENGINEERING JOURNAL
卷 450, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.138213

关键词

Cobalt single atom; Oxygen reduction reaction; Electrocatalyst; Aluminum-air battery

资金

  1. National Natural Science Foundation of China [51874197]
  2. Natural Science Foundation of Shanghai [21ZR1429400, 22ZR1429700]

向作者/读者索取更多资源

FePc molecules anchored on Co single atoms/N-doped porous carbon nanofibers (FePc@Co-SAs/PCNF) were prepared for enhanced electronic interaction in oxygen reduction reactions (ORR). XAS analysis confirmed the atomically dispersed Fe and Co sites, showing improved ORR performance. The in-situ Raman spectra recorded the electrocatalytic ORR processes on FePc@Co-SAs/PCNF, with remarkable discharge performance in AABs. This study offers a new strategy for designing metallic macrocyclic compound electrocatalysts and promotes the development of metal-air batteries.
Aluminum-air batteries (AABs) have received increasing interest for next-generation energy conversion systems. However, the development of AABs is hindered by the sluggish kinetics of cathodic oxygen reduction reaction (ORR). Iron phthalocyanine (FePc) is one of the active electrocatalysts for ORR but still far from Pt-based ma-terials in terms of electrocatalytic performance. Herein, FePc molecules anchored on the Co single atoms/N- doped porous carbon nanofibers (denoted as FePc@Co-SAs/PCNF) with enhanced electronic interaction are prepared for the ORR. X-ray absorption spectra (XAS) analysis confirms the atomically dispersed Fe and Co sites and reveals the electronic interaction between FePc and Co-N3. The cobalt single atoms can break the electronic distribution symmetry of FePc and induce electronic localization to boost the ORR performance. As a result, the FePc@Co-SAs/PCNF electrocatalyst demonstrates a remarkable ORR activity in both alkaline and neutral elec-trolytes. The electrocatalytic ORR processes on the FePc@Co-SAs/PCNF are recorded by in-situ Raman spectra. Moreover, the ORR mechanism is discussed, which is supported by density functional theory (DFT) calculations. Furthermore, the AABs based on FePc@Co-SAs/PCNF exhibit remarkable discharge performance. This study offers a new strategy for rationally designing metallic macrocyclic compound electrocatalysts and promotes the development of metal-air batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据