4.7 Review

Morphology control and electronic tailoring of CoxAy (A = P, S, Se) electrocatalysts for water splitting

期刊

CHEMICAL ENGINEERING JOURNAL
卷 460, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2023.141674

关键词

Co x A y (A = P; Se) -based materials; Electrocatalysts; Structural or electronic modulation; Oxygen evolution reaction; Hydrogen evolution reaction; Water splitting

向作者/读者索取更多资源

This article summarizes recent efforts and progress in regulating the electronic and morphological structures of CoxAy (A = P, S, Se)-based materials for the optimization of their catalytic performance. Methods such as phase control, defect engineering, nanostructure construction, heteroatom doping, and composite engineering are introduced to optimize the electronic configurations, increase active sites, and enhance the conductivity, etc. Furthermore, the underlying activity-structure relationships behind the boosted catalytic behavior of these materials are discussed in detail. Lastly, a perspective on the future exploration of CoxAy (A = P, S, Se)-based electrocatalysts is presented. This review provides valuable insights into the investigation of emerging materials in energy chemistry.
As a crucial route for the development of clean and sustainable energy systems, electrochemical water splitting has received much attention. Designing high-performance electrocatalysts for this process is extremely desirable to lower its overpotential and make practical applications possible. Over the past years, owing to the exploitation of novel preparation strategies, advanced characterization approaches, and insightful theoretical calculations, the rational design of numerous CoxAy (A = P, S, Se)-based materials with excellent electrocatalytic watersplitting behavior has been demonstrated. In particular, the catalytic properties of these CoxAy (A = P, S, Se)based materials highly depend on their structural/electronic modulation. This article summarizes recent efforts and progress in regulating their electronic and morphological structures toward the performance optimization. Phase control, defect engineering, nanostructure construction, heteroatom doping, and composite engineering, are introduced to optimize electronic configurations, increase active sites, and enhance the conductivity, etc. Moreover, the underlying activity-structure relationships behind the boosted catalytic behavior of these CoxAy (A = P, S, Se)-based materials are discussed in detail. Lastly, a perspective on the exploration of CoxAy (A = P, S, Se)-based electrocatalysts in the future is presented. This review provides insights into the investigation of emerging materials in energy chemistry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据