4.7 Article

Ultra-uniform MIL-88B(Fe)/Fe3S4 hybrids engineered by partial sulfidation to boost catalysis in electro-Fenton treatment of micropollutants: Experimental and mechanistic insights

期刊

CHEMICAL ENGINEERING JOURNAL
卷 455, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.140757

关键词

Heterogeneous electro-Fenton; Metal-organic framework; Fe(II) regeneration; Pharmaceutical pollution; Water treatment

向作者/读者索取更多资源

A sulfidation strategy is proposed to enhance the catalytic activity of MIL-88B(Fe) in water treatment. The sulfidated catalyst outperformed the original MIL-88B(Fe) in the degradation of organic micropollutants and can be reused.
Fe-based metal-organic frameworks are promising catalysts for water treatment, although their viability is hampered by the slow regeneration of active Fe(II) sites. A facile sulfidation strategy is proposed to boost the catalytic activity of MIL-88B(Fe) in heterogeneous electro-Fenton (HEF) treatment of organic micropollutants at mild pH. The synthesized MIL-88B(Fe)/Fe3S4 hybrids possessed numerous and durable unsaturated iron sites, acting the S-2(-) atoms as electron donors that enhanced the Fe(II) recycling. The sulfidated catalyst outperformed the MIL-88B(Fe), as evidenced by the 7-fold faster degradation of antibiotic trimethoprim by HEF and the fast destruction of micropollutants in urban wastewater. The hybrid catalyst was reused, obtaining >90% drug removal after four runs and, additionally, its inherent magnetism facilitated the post-treatment recovery. Elec-trochemical tests and DFT calculations provided mechanistic insights to explain the enhanced catalysis, sug-gesting that the accelerated Fe(III)/Fe(II) cycling and the enhanced mass transport and electron transfer accounted for the efficient trimethoprim degradation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据