4.7 Article

Three-dimensional charge transfer pathway in close-packed nickel hexacyanoferrate-on-MXene nano-stacking for high-performance capacitive deionization

期刊

CHEMICAL ENGINEERING JOURNAL
卷 452, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.139451

关键词

Capacitive deionization; MXene nano -stacking; NiHCF; 3D charge transfer pathway; Water desalination

向作者/读者索取更多资源

We engineered a three-dimensional charge transfer pathway in NiHCF/MXene through in situ close packing of NiHCF nanoparticles on MXene nano-stacking by electrostatic attraction. Compared to charge transfer mode in two-dimensional nano-sheets, 3D MXene nano-stacking can not only provide horizontal charge transfer pathway alongside nano-sheets, but also possess unique vertical charge transfer pathway between nano-sheets. As a result, the NiHCF/MXene exhibits a superior desalination performance with a high desalination capacity of 30 mg g-1, ultrahigh desalination rate of 9.5 mg g-1 min-1 and good cycling stability over 30 cycles.
Prussian blue analogues (PBAs), as a kind of metal-organic framework-like materials, has attracted great attention in capacitive deionization (CDI) field due to excellent redox activity, but its desalination performance, especially its desalination rate, is greatly limited due to its poor electrical conductivity. Hybridization of PBAs with MXene can potentially solve this problem, but still remains intrinsic limitation, such as poor vertical charge transfer between nano-sheets. Herein, we engineered a three-dimensional (3D) charge transfer pathway in nickel hexacyanoferrate (NiHCF)/MXene through in situ close packing of NiHCF nanoparticles on MXene nano-stacking by electrostatic attraction. Compared to charge transfer mode in two-dimensional (2D) nano-sheets, 3D MXene nano-stacking can not only have excellent conductivity like MXene to provide horizonal charge transfer pathway alongside nano-sheets, but also possess unique vertical charge transfer pathway between nano-sheets. As a result, the NiHCF/MXene exhibits a superior desalination performance with a high desalination capacity of 30 mg g-1, ultrahigh desalination rate of 9.5 mg g-1 min-1 and good cycling stability over 30 cycles. This work demonstrates an effective way to address the poor CDI performance of nickel hexacyanoferrate nanoparticles by employing 3D MXene nano-stacking as charge transfer support, and is of significance to be applied for other nanoparticle materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据