4.7 Article

Process-informed adsorbent design guidelines for direct air capture

期刊

CHEMICAL ENGINEERING JOURNAL
卷 456, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.141035

关键词

Direct air capture; Sorbent design; Adsorption; Global sensitivity analysis; Machine learning; Process modelling

向作者/读者索取更多资源

Direct air capture using solid adsorbents is crucial for achieving net zero greenhouse gas emissions. Current research mainly focuses on developing new adsorbents, but there is a disconnect between adsorbent design and process performance. This study demonstrates that while CO2 capacity is important for a steam-assisted TVSA process, it does not significantly impact the performance of an amine-functionalised adsorbent in a temperature vacuum swing adsorption process. Factors such as adsorption kinetics, density, and thermal conductivity play a more critical role in energy efficiency and cost reduction. The findings provide guidance for scientists and engineers in improving adsorbent design and intensified DAC processes.
Direct air capture using solid adsorbents is a proven technology critical to reducing our net greenhouse gas emissions to zero and beyond. Currently, academic research into the technology mainly focuses on the devel-opment of new adsorbents. However, there is a discord between the adsorbent design and process performance. Many materials scientists focus on maximising metrics such as the CO2 capacity of their adsorbent. Here, we combine detailed process modelling, machine learning, and extensive global sensitivity analysis, which entails varying all of the model parameters together, on a direct air capture process to show that the dry CO2 adsorption capacity does not influence process performance for an amine-functionalised adsorbent operating in a temper-ature vacuum swing adsorption (TVSA) process, while it is important in a steam-assisted TVSA (S-TVSA) process. In fact, adsorption kinetics, density, and thermal conductivity are all critical attributes to obtaining a low energy penalty and reduced costs. The analysis also highlights the importance of heat transfer, directing process engi-neers to (alternative) adsorber designs that maximise this. By an in-depth evaluation of how process performance indicators are affected by materials properties and process operating parameters, this work provides guidance to both material scientists and process engineers towards the design of a unicorn adsorbent and intensified DAC processes. This will improve the performance of solid adsorbent direct air capture and help drive down the costs of this vital technology to avert the worst impacts of climate change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据