4.7 Article

Atomic Pt clusters on Au dendrite for formic acid oxidation

期刊

CHEMICAL ENGINEERING JOURNAL
卷 451, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.138664

关键词

Pt cluster; Self -terminated electrodeposition; Formic acid oxidation reaction; Direct formic acid fuel cell

向作者/读者索取更多资源

This study presents a simple electrochemical strategy to fabricate atomic Pt clusters on Au dendrites, resulting in a significantly reduced Pt loading. The prepared Pt/Au/CP sample exhibits high selectivity for formic acid oxidation reaction and maintains stable activity even after cycling tests.
The minimization of Pt loadings on Au via facile fabrication methods remains a grand challenge in the devel-opment of commercially viable electrodes for direct formic acid fuel cells. Herein, we report a simple electro-chemical strategy to prepare atomic Pt clusters on Au dendrites supported by carbon paper (CP) as a gas diffusion electrode. At highly negative deposition potentials, Pt deposition is autonomously quenched by immediate adsorption of discharged proton (H) on Pt surface, while highly roughened Au dendrites lead to resis-tance-capacitance delay for the transient cathodic current. As a result, the suppressed Pt nucleation and self -terminated Pt growth allows for the formation of isolated Pt sites on Au dendrites. The Pt/Au/CP with an ultra-low Pt loading of 5.0 mu gPt/cmgeo 2demonstrates high selectivity for direct pathway of formic acid oxidation reaction (FAOR), owing to the ensemble effect. A gradual increase of FAOR activity is observed during cycling test and then, the 20 cycled Pt/Au/CP shows remarkable FAOR activity in half-cell test, exceeding state-of-the-art Pt-Au catalysts. Theoretical calculation indicates that the stabilized intermediate on Pt clusters accelerates the direct FAOR pathway. CO chemisorption analysis reveals that the isolated Pt sites remain stable throughout the reaction. Single cell test for direct formic acid fuel cell with 20 cycled Pt/Au/CP anode demonstrate two-order higher Pt mass activity and mass power density, compared with values reported in recent literature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据