4.7 Article

Promoted photocarriers separation in atomically thin BiOCl/Bi2WO6 heterostructure for solar-driven photocatalytic CO2 reduction

期刊

CHEMICAL ENGINEERING JOURNAL
卷 449, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.137874

关键词

2D/2D heterostructure; BiOCl/Bi2WO6; photocatalytic CO2 reduction; Promoted photocarriers separation; Close coupling interface

资金

  1. Young Scholars Program of Shandong University
  2. National Natural Science Foundation of China [21701099]
  3. Taishan Scholars Climbing Program of Shandong Province [tspd20150201]

向作者/读者索取更多资源

In this study, a novel atomically thin BiOCl/Bi2WO6 heterostructure was constructed to enhance photocarrier separation in solar energy conversion. The resulting heterostructure exhibited superior photocatalytic CO2 reduction activity and selectivity, with improved CO2 uptake capability and interfacial charge transfer behavior. Theoretical calculations further supported the enhanced photoreduction selectivity.
Exploring efficient strategies to promote photocarrier separation remains a challenge in solar energy conversion processes. Herein, we construct a novel atomically thin BiOCl/Bi2WO6 heterostructure to enhance photocarriers separation via the internal electric field at the heterointerface. The resultant atomically thin BiOCl/Bi2WO6 heterostructure exhibits superior photocatalytic CO2 reduction activity with a CH4 evolution rate of ca. 6.63 mu mol g(-1)h(-1) and 82.9% in selectivity under simulated sunlight irradiation without sacrificial reagent. The experimental characterizations highlight that the atomically thin heterostructure endows BiOCl/Bi2WO6 with an enhanced CO2 uptake capability and improved interfacial charge transfer behavior. Further theoretical calculations demonstrate that BiOCl/Bi2WO6 heterointerfaces are energetically more favorable for stabilizing the CHO*, which accounts for the improved photoreduction selectivity of CH4. This work is expected to provide inspiration for preparing other 2D atomically thin heterostructures employed in the solar energy conversion field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据