4.7 Article

A general theory for infectious disease dynamics

期刊

CHAOS SOLITONS & FRACTALS
卷 165, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chaos.2022.112860

关键词

Infection spreading; Epidemics; Compartmental models; SIR; SEIR; COVID-19

向作者/读者索取更多资源

We present a general theory of infection spreading that overcomes the limitations of existing models and can deal with any distribution of latent times. By studying the characteristic functions of latent times probability density functions, we provide a general solution and demonstrate the feasibility of the theory through simulating the spreading of COVID-19 infection in Italy.
We present a general theory of infection spreading. It directly follows from conservation laws once known the probability density functions of latent times. The theory can deal with any distribution of compartments latent times. Real probability density function can be then employed, thus overcoming the limitations of standard SIR, SEIR and other similar models that implicitly make use of exponential or exponential-related distributions. SIR and SEIR-type models are, in fact, a subclass of the theory here presented. We show that beside the infection rate, the probability density functions of latent times in the exposed and infectious compartments govern the dynamics of infection spreading. We study the stability of such dynamical system and provide the general solution of the linearized equations in terms of the characteristic functions of latent times probability density functions. We exploit the theory to simulate the spreading of COVID-19 infection in Italy during the first 120 days.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据