4.7 Article

Sm-doped enhanced magnetic-dielectric properties of low-temperature fired Co2Z ferrite materials for high-frequency device applications

期刊

CERAMICS INTERNATIONAL
卷 49, 期 5, 页码 8502-8507

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2022.11.012

关键词

Co2Z ferrite; Sm-doped; Magnetic-dielectric property; High-frequency application

向作者/读者索取更多资源

In this study, Ba3Co2Fe24-xSmxO41 materials were prepared using low temperature-fired process, showing superior magnetic-dielectric properties in high-frequency range, making them suitable for high-frequency antenna applications.
Co2Z ferrite with superior performance is a beneficial material for high filter devices and antenna substrates. In this work, Ba3Co2Fe24-xSmxO41 (x = 0.00-0.50 with a step of 0.10) materials were prepared using low temperature-fired process with 2.5 wt% of Bi2O3. The phase formation, microstructure, magnetic property, complex permittivity, and complex permeability were studied using X-ray diffraction, scanning electron mi-croscopy, vibrating sample magnetometer, and vector network analyzer. The materials remained in a single hexagonal phase, and the grain size increased with increase of Sm-doped content. Saturation magnetization of samples increased at first and then decreased. When x = 0.20 and 0.30, the value of 4 pi MS was 2910.4 G and 2861.7 G, respectively. The variation of saturation magnetization is mainly due to the occupancy of Sm3+ ions. When Sm3+ ion doped Fe3+ ion of Co2Z ferrite, Sm3+ ion first preferred to occupy 4eIV site due to its low electronegativity, and then occupied 12k and 4f sites at high doped content, affecting magnetic moment and magneto-crystalline anisotropy. Furthermore, low-temperature sintering improves magnetic-dielectric properties of Sm-doped materials in high-frequency range. The real part of magnetic permeability (mu ') reached a maximum value of 8.4 when x = 0.20 and the real part of dielectric permittivity (epsilon ') reached a maximum value of 14.1 when x = 0.30. The magnetic loss and dielectric loss remained low (tan delta mu = 0.05-0.08 and tan delta epsilon = 0.005-0.04) and the off-cut frequency was nearly 1 GHz. The results indicated that these magnetic-dielectric materials have great potential for high-frequency antenna applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据