4.8 Article

Immoderate nanoarchitectures of bimetallic MOF derived Ni-Fe-O/NPC on porous carbon nanofibers as freestanding electrode for asymmetric supercapacitors

期刊

CARBON
卷 201, 期 -, 页码 12-23

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2022.08.091

关键词

Asymmetric supercapacitors (ASCs); Porous carbon nanofibers (PCNFs); Bimetallic metal -organic frameworks; Bimetallic oxide; Energy storage

向作者/读者索取更多资源

The combination of bimetallic oxide nanomaterials and porous carbon materials has significantly contributed to the development of high-performance energy storage devices. Researchers have successfully synthesized porous multimetal nanomaterials using a self-templated metal-organic framework strategy, resulting in excellent electrochemical performance in supercapacitors.
The logical design and engineering of bimetallic oxide nanomaterials with porous carbon materials have had a significant impact on the development of high-performance electrode materials for energy storage devices in recent years. The vertical and uniform building of porous multimetal nanomaterials on the surface of nanoscale carbon fibers is difficult but not impossible. We present a self-templated metal-organic framework (MOF)-based strategy for the synthesis and assembly of bimetallic oxides/nanoporous carbon nanostructures (Ni-Fe-O/NPC) on porous carbon nanofibers (PCNFs). The vertical alignment of Ni-Fe-O/NPC at PCNFs favors a fast redox reaction by shortening the ion/electrode diffusion path at the electrode-electrolyte interface and helps enhance the overall electrochemical performance. As a freestanding electrode for supercapacitors, it has a high specific capacitance of 1419 F g(-1) at 1 A g(-1) and good cycling life with capacitance retention of approximately 88.5% after 10,000 cycles. The Ni-Fe-O/NPC@PCNFs-400//Fe2O3/NPC@PCNFs asymmetric supercapacitor (ASC) achieves a high energy density of 41.3 Wh kg(-1) at a power density of 892.2 W kg(-1) with a long cycle of life (20,000 cycles) and a high rate capability (78.6%), indicating its potential applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据