4.7 Article

Tumor cell-derived asymmetric dimethylarginine regulates macrophage functions and polarization

期刊

CANCER CELL INTERNATIONAL
卷 22, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12935-022-02769-7

关键词

Arginine metabolism; Asymmetric dimethylarginine; cancer stem cells; Autophagy; Macrophage polarization

类别

资金

  1. California Breast Cancer Research Program [CBCRP 23IB-0005]
  2. National Institute of General Medical Sciences (NIGMS) Mississippi IDeA Network of Biomedical Research Excellence (INBRE) [P20GM103476]

向作者/读者索取更多资源

This study found that elevated levels of ADMA impair the proliferation and phagocytosis of macrophages, and can even lead to their death. ADMA also affects the phenotype of macrophages. However, the effects of ADMA on normal epithelial cells and breast cancer cells are relatively minor. Co-culturing tumor cells with primed splenocytes results in increased secretion of ADMA by tumor cells and alterations in arginine metabolism-related gene expression. These findings suggest that tumor cells manipulate macrophage polarization through ADMA secretion to promote tumor tolerance.
Background Asymmetric dimethylarginine (ADMA), which is significantly elevated in the plasma of cancer patients, is formed via intracellular recycling of methylated proteins and serves as a precursor for resynthesis of arginine. However, the cause of ADMA elevation in cancers and its impact on the regulation of tumor immunity is not known. Methods Three mouse breast cell lines (normal breast epithelial HC11, breast cancer EMT6 and triple negative breast cancer 4T1) and their equivalent 3D stem cell culture were used to analyze the secretion of ADMA using ELISA and their responses to ADMA. Bone marrow-derived macrophages and/or RAW264.7 cells were used to determine the impact of increased extracellular ADMA on macrophage-tumor interactions. Gene/protein expression was analyzed through RNAseq, qPCR and flow cytometry. Protein functional analyses were conducted via fluorescent imaging (arginine uptake, tumor phagocytosis) and enzymatic assay (arginase activity). Cell viability was measured via MTS assay and/or direct cell counting using Countess III FL system. Results For macrophages, ADMA impaired proliferation and phagocytosis of tumor cells, and even caused death in cultures incubated without arginine. ADMA also led to an unusual macrophage phenotype, with increased expression of arginase, cd163 and cd206 but decreased expression of il10 and dectin-1. In contrast to the severely negative impacts on macrophages, ADMA had relatively minor effects on proliferation and survival of mouse normal epithelial HC11 cells, mouse breast cancer EMT6 and 4T1 cells, but there was increased expression of the mesenchymal markers, vimentin and snail2, and decreased expression of the epithelial marker, mucin-1 in EMT6 cells. When tumor cells were co-cultured ex vivo with tumor antigen in vivo-primed splenocytes, the tumor cells secreted more ADMA and there were alterations in the tumor cell arginine metabolic landscape, including increased expression of genes involved in arginine uptake, metabolism and methylation, and decreased expression of a gene that is responsible for arginine demethylation. Additionally, interferon-gamma, a cytokine involved in immune challenge, increased secretion of ADMA in tumor cells, a process attenuated by an autophagy inhibitor. Conclusion Our results suggest initial immune attack promotes autophagy in tumor cells, which then secrete ADMA to manipulate macrophage polarization favoring tumor tolerance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据