4.7 Article

Extensive metabolic consequences of human glycosyltransferase gene knockouts in prostate cancer

期刊

BRITISH JOURNAL OF CANCER
卷 128, 期 2, 页码 285-296

出版社

SPRINGERNATURE
DOI: 10.1038/s41416-022-02040-w

关键词

-

类别

向作者/读者索取更多资源

Naturally occurring germline gene deletions (KO) of UGT2B17 and UGT2B28 genes lead to metabolic rewiring, promoting prostate cancer growth and metastasis.
BACKGROUND: Naturally occurring germline gene deletions (KO) represent a unique setting to interrogate gene functions. Complete deletions and differential expression of the human glycosyltransferase UGT2B17 and UGT2B28 genes are linked to prostate cancer (PCa) risk and progression, leukaemia, autoimmune and other diseases. METHODS: The systemic metabolic consequences of UGT deficiencies were examined using untargeted and targeted mass spectrometry-based metabolomics profiling of carefully matched, treatment-naive PCa cases. RESULTS: Each UGT KO differentially affected over 5% of the 1545 measured metabolites, with divergent metabolic perturbations influencing the same pathways. Several of the perturbed metabolites are known to promote PCa growth, invasion and metastasis, including steroids, ceramides and kynurenine. In UGT2B17 KO, reduced levels of inactive steroid-glucuronides were compensated by sulfated derivatives that constitute circulating steroid reservoirs. UGT2B28 KO presented remarkably lower levels of oxylipins paralleled by reduced inflammatory mediators, but higher ceramides unveiled as substrates of the enzyme in PCa cells. CONCLUSION: The distinctive and broad metabolic rewiring caused by UGT KO reinforces the need to examine their unique and divergent functions in PCa biology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据