4.5 Article

Metabolic Profiling Reveals Biochemical Pathways and Potential Biomarkers Associated With the Pathogenesis of Krabbe Disease

期刊

JOURNAL OF NEUROSCIENCE RESEARCH
卷 94, 期 11, 页码 1094-1107

出版社

WILEY
DOI: 10.1002/jnr.23789

关键词

Krabbe disease; globoid cell leukodystrophy; metabolomics; twitcher; glucose metabolism; mitochondrial dysfunction; oxidative stress; biomarker

资金

  1. National Institutes of Health [R03-NS087359]
  2. Empire State Development Corporation-Krabbe Disease Research Working Capital [W753]
  3. Empire State Development Corporation for Krabbe Disease Research Capital Equipment [U446]
  4. Hunter's Hope Foundation

向作者/读者索取更多资源

Krabbe disease (KD) is caused by mutations in the galactosylceramidase (GALC) gene, which encodes a lysosomal enzyme that degrades galactolipids, including galactosylceramide and galactosylsphingosine (psychosine). GALC deficiency results in progressive intracellular accumulation of psychosine, which is believed to be the main cause for the demyelinating neurodegeneration in KD pathology. Umbilical cord blood transplantation slows disease progression when performed presymptomatically but carries a significant risk of morbidity and mortality. Accurate presymptomatic diagnosis is therefore critical to facilitate the efficacy of existing transplant approaches and to avoid unnecessary treatment of children who will not develop KD. Unfortunately, current diagnostic criteria, including GALC activity, genetic analysis, and psychosine measurement, are insufficient for secure presymptomatic diagnosis. This study performs a global metabolomic analysis to identify pathogenetic metabolic pathways and novel biomarkers implicated in the authentic mouse model of KD known as twitcher. At a time point before onset of signs of disease, twitcher hindbrains had metabolic profiles similar to WT, with the exception of a decrease in metabolites related to glucose energy metabolism. Many metabolic pathways were altered after early signs of disease in the twitcher, including decreased phospholipid turnover, restricted mitochondrial metabolism of branched-chain amino acids, increased inflammation, and changes in neurotransmitter metabolism and osmolytes. Hypoxanthine, a purine derivative, is increased before signs of disease appear, suggesting its potential as a biomarker for early diagnosis of KD. Additionally, given the early changes in glucose metabolism in the pathogenesis of KD, diagnostic modalities that report metabolic function, such as positron emission tomography, may be useful in KD. (C) 2016 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据